
www.manaraa.com

Making the future safe for the past:Adding Genericity to the JavaTM Programming LanguageGilad Bracha, Sun Microsystems, gilad.bracha@sun.comMartin Odersky, University of South Australia, odersky@cis.unisa.edu.auDavid Stoutamire, Sun Microsystems, david.stoutamire@sun.comPhilip Wadler, Bell Labs, Lucent Technologies, wadler@research.bell{labs.comAbstractWe present GJ, a design that extends the Java program-ming language with generic types and methods. Theseare both explained and implemented by translation intothe unextended language. The translation closely mim-ics the way generics are emulated by programmers: iterases all type parameters, maps type variables to theirbounds, and inserts casts where needed. Some sub-tleties of the translation are caused by the handling ofoverriding.GJ increases expressiveness and safety: code utiliz-ing generic libraries is no longer buried under a plethoraof casts, and the corresponding casts inserted by thetranslation are guaranteed to not fail.GJ is designed to be fully backwards compatible withthe current Java language, which simpli�es the tran-sition from non-generic to generic programming. Inparticular, one can retro�t existing library classes withgeneric interfaces without changing their code.An implementation of GJ has been written in GJ,and is freely available on the web.1 IntroductionGeneric types are so important that even a languagethat lacks them may be designed to simulate them.Some object-oriented languages are designed to supportsubtypes directly, and to support generics by the idiomof replacing variable types by the top of the type hier-archy. For instance, a collection with elements of anytype is represented by a collection with elements of typeObject.To appear in the 13th Annual ACM SIGPLANConference on Object-Oriented Programming Sys-tems, Languages, and Applications (OOPSLA'98),Vancouver, BC, Canada, October, 1998.

This approach is exempli�ed by the Java program-ming language[GLS96]. Generics are represented bythis idiom throughout the standard Java libraries, in-cluding vectors, hash tables, and enumerations. As theJava Development Kit (JDK) has evolved, generics haveplayed an increasing role. JDK 1.1 introduced an ob-server pattern that depends on generics, as do the col-lection classes introduced in JDK 1.2. Oberon also relieson the generic idiom, and dynamically typed languagessuch as Smalltalk [GR83] use this idiom implicitly.Nonetheless, generics may merit direct support. De-signing a language with direct support for subtypingand generics is straightforward. Examples include Mod-ula 3, Ada 95, Ei�el, and Sather. Adding generics toan existing language is almost routine. We proposedadding generics to the Java programming language inPizza [OW97], and we know of four other proposals[AFM97, MBL97, TT98, CS98]. Clemens Szyperskiproposed adding generics to Oberon [RS97]. Strongtalk[BG93] layers a type system with generic types on topof Smalltalk.The generic legacy problem However, few propos-als tackle the generic legacy problem: when direct sup-port for generics is added to a language that supportsthem via the generic idiom, what happens to legacycode that exploits this idiom?Pizza is backward compatible with the Java pro-gramming language, in that every legal program of thelatter is also legal in the former. However, this compat-ibility is of little help when it comes to generics. Forexample, JDK 1.2 contains an extensive library of col-lection classes based on the generic idiom. It is straight-forward to rewrite this library to use generics directly,replacing the legacy type Collection by the parametrictype Collection<A>. However, in Pizza these two typesare incompatible, so one must rewrite all legacy code,or write adaptor code to convert between legacy andparametric types. Code bloat may result from refer-

www.manaraa.com

ences to both the legacy and parametric versions ofthe library. Note the problem is not merely with thesize of legacy libraries (which may be small), but withmanaging the upgrade from the legacy types to para-metric types (which can be a major headache if refer-ences to legacy types are dispersed over a large bodyof code). If legacy libraries or code are available onlyin binary rather than source, then these problems arecompounded.GJ Here we propose GJ, a superset of the Java pro-gramming language that provides direct support forgenerics. GJ compiles into Java virtual machine (JVM)byte codes, and can be executed on any Java compli-ant browser. In these respects GJ is like Pizza, but GJdi�ers in that it also tackles the generic legacy problem.GJ contains a novel language feature, raw types, tocapture the correspondence between generic and legacytypes, and a retro�tting mechanism to allow generictypes to be imposed on legacy code. A parametric typeCollection<A> may be passed wherever the correspond-ing raw type Collection is expected. The raw type andparametric type have the same representation, so noadaptor code is required. Further, retro�tting allowsone to attribute the existing collection class library withparametric types, so one only requires one version of thelibrary; an added plus is that new code will run in anyJDK 1.2 compliant browser against the built-in collec-tion class library. Raw types and retro�tting apply evenif libraries or code are available only as binary class �les,and no source is available. Combined, these techniquesgreatly ease the task of upgrading from legacy code togenerics.The semantics of GJ is given by a translation backinto the Java programming language. The translationerases type parameters, replaces type variables by theirbounding type (typically Object), adds casts, and in-serts bridge methods so that overriding works properly.The resulting program is pretty much what you wouldwrite in the unextended language using the generic id-iom. In pathological cases, the translation requiresbridge methods that can only be encoded directly inJVM byte codes. Thus GJ extends the expressive powerof the Java programming language, while remainingcompatible with the JVM.GJ comes with a cast-iron guarantee: no cast in-serted by the compiler will ever fail. (Caveat: this guar-antee is void if the compiler generates an `unchecked'warning, which may occur if legacy and parametric codeis mixed without bene�t of retro�tting.) Furthermore,since GJ compiles into the JVM, all safety and securityproperties of the Java platform are preserved. (Reassur-ance: this second guarantee holds even in the presenceof unchecked warnings.)

Security One may contrast two styles of implement-ing generics, homogeneous and heterogeneous. The ho-mogeneous style, exempli�ed by the generic idiom, re-places occurrences of the type parameter by the typeObject. The heterogeneous style, exempli�ed by C++and Ada, makes one copy of the class for each instantia-tion of the the type parameter. The GJ and Pizza com-pilers implement the homogeneous translation, whileAgesen, Freund, and Mitchell [AFM97] propose havingthe class loader implement the heterogeneous transla-tion. Other proposals utilize a mixture of homogeneousand heterogeneous techniques [CS98].As observed by Agesen, Freund, and Mitchell,the heterogeneous translation provides tighter securityguarantees than the homogeneous. For example, un-der the homogeneous translation a method expectinga collection of secure channels may be passed a collec-tion of any kind of object, perhaps leading to a securitybreach. To minimize this problem, GJ always insertsbridge methods when subclassing a generic class, so theuser may ensure security simply by declaring suitablespecialized subclasses.The homogeneous translation also enjoys some ad-vantages over the heterogeneous. Surprisingly, with thesecurity model of the Java virtual machine, the hetero-geneous translation makes it impossible to form somesensible type instantiations. (This problem is entirelyobvious, but only in retrospect.) GJ and other lan-guages based on the homogeneous translation do notsu�er from this di�culty.Type inference While type systems for subtypingand for generics are well understood, how to combinethe two remains a topic for active research. In particu-lar, it can be di�cult to infer instantiations for the typearguments to generic methods.GJ uses a novel algorithm for this purpose, whichcombines two desirable (and at �rst blush contradic-tory) properties: it is local, in that the type of an ex-pression depends only on the types of its subexpres-sions, and not on the context in which it occurs; and itworks for empty, in that inference produces best typeseven for values like the empty list that have many pos-sible types. Further, the inference algorithm supportssubsumption, in that if an expression has a type, thenit may be regarded as having any supertype of thattype.In contrast, the algorithm used in Pizza is non-localand does not support subsumption (although it doeswork for empty), while the algorithm used in Strongtalk[BG93] does not work for empty (although it is local andsupports subsumption), and algorithms for constraint-based type inference [AW93, EST95] are non-local (al-though they work for empty and support subsumption).

www.manaraa.com

Pizza uses a variant of the Hindley-Milner algorithm[Mil78], which we regard as non-local since the type ofa term may depend on its context through uni�cation.Raw types and retro�tting Raw types serve twopurposes in GJ: they support interfacing with legacycode, and they support writing code in those few sit-uations (like the de�nition of an equality method)where it is necessary to downcast from an unparam-eterized type (like Object) to a parameterized type (likeLinkedList<A>), and one cannot determine the valueof the type parameter. The type rules for raw typesare carefully crafted so that the compiler can guaran-tee the absence of type errors in methods like equal-ity. However, when interfacing to legacy code, compile-time checking is not always possible, and in this case,an `unchecked' warning may be issued. The prolifera-tion of `unchecked' warnings can be avoided by usingretro�tting to add information about type parametersto legacy code.Related work GJ is based closely on the handlingof parametric types in Pizza [OW97]. The Pizza com-piler (itself written in Pizza) has been freely availableon the web since 1996. GJ di�ers from Pizza in pro-viding greater support for backward compatibility, no-tably in allowing new code to work with old libraries.GJ also uses a simpler type system. In Pizza the typeof an expression may depend on the type expected byits context, whereas in GJ the type of an expression isdetermined solely by the type of its constituents.GJ maintains no run-time information about typeparameters. The same design decision is made in Pizzaand in a proposal to add parametric types to Oberon[RS97]. There are a number of other proposals foradding parameterized types to the Java programminglanguage, all based on carrying type information at run-time [AFM97, MBL97, CS98]. Run-time types may beless e�cient to implement than erasure [OR98], andmay be harder to interface with legacy code; on theother hand, it is arguably more expressive to main-tain run-time type information, and more consistentwith the rest of the design of the Java programminglanguage, which maintains run-time type informationabout classes and arrays. For this reason, GJ has beendesigned to be compatible with an extension that main-tains type information at run-time.In particular, Cartwright and Steele have developedthe NextGen design in tandem with GJ [CS98]. Justas the Java programming language is a subset of GJ, soGJ is a subset of NextGen. A more detailed comparisonwith NextGen appears in the conclusion.Virtual types have been suggested as an alternativeto parametric types [Tho97, Tor98]. A comparison of

the relative strengths of parametric and virtual typesappears elsewhere [BOW98]. It may be possible tomerge virtual and parametric types [BOW98, TT98],but it is not clear whether the bene�ts of the mergeroutweigh the increase in complexity.Status An implementation of GJ is freely available onthe web [GJ98a]. The GJ compiler is derived from thePizza compiler and, like it, can also be used as a stand-alone compiler for the Java programming language. Thecompiler is about 20,000 lines of GJ.This paper concentrates on the design issues under-lying GJ. Companion papers provide a tutorial intro-duction [GJ98b] and a precise speci�cation [GJ98c].Outline The remainder of this paper is structured asfollows. Section 2 introduces the basic features of GJ,using a running example based on collections and linkedlists. Section 3 details the translation from GJ into theJava programming language and JVM byte code. Sec-tion 4 explains why an invariant subtyping rule is usedfor parameterized types. Section 5 describes the typeinference algorithm. Section 6 discusses how genericsrelate to the Java platform's security model. Section 7details restrictions imposed on the source language bythe lack of run-time type information. Section 8 intro-duces raw types. Section 9 describes retro�tting. Sec-tion 10 shows how generics are exploited in the imple-mentation the GJ compiler itself. Section 11 concludes.2 Generics in GJFigure 1 shows a simpli�ed part of the Java collectionclass library expressed in GJ. There are interfaces forcollections and iterators, and a linked list class. The col-lection interface provides a method to add an elementto a collection (add), and a method to return an iteratorfor the collection (iterator). In turn, the iterator inter-face provides a method to determine if the iteration isdone (hasNext), and (if it is not) a method to returnthe next element and advance the iterator (next). Thelinked list class implements the collections interface. Itcontains a nested class for list nodes (Node), and ananonymous class for the list iterator.The interfaces and class take a type parameter A,written in angle brackets, representing the element type.The nested class Node has A as an implicit parameterinherited from the scope, the full name of the class be-ing LinkedList<A>.Node. The scope of a type parameteris the entire class, excluding static members and staticinitializers. This is required since di�erent instances of aclass may have di�erent type parameters, but access thesame static members. Parameters are irrelevant whenusing a class name to access a static member, and must

www.manaraa.com

interface Collection<A> fpublic void add (A x);public Iterator<A> iterator ();ginterface Iterator<A> fpublic A next ();public boolean hasNext ();gclass NoSuchElementException extends RuntimeException fgclass LinkedList<A> implements Collection<A> fprotected class Node fA elt;Node next = null;Node (A elt) f this.elt = elt; ggprotected Node head = null, tail = null;public LinkedList () fgpublic void add (A elt) fif (head == null) fhead = new Node(elt); tail = head;g else ftail.next = new Node(elt); tail = tail.next;ggpublic Iterator<A> iterator () freturn new Iterator<A> () fprotected Node ptr = head;public boolean hasNext () f return ptr != null; gpublic A next () fif (ptr != null) fA elt = ptr.elt; ptr = ptr.next; return elt;g else fthrow new NoSuchElementException ();ggg;ggclass Test fpublic static void main (String[] args) fLinkedList<String> ys = new LinkedList<String>();ys.add("zero"); ys.add("one");String y = ys.iterator().next();gg Figure 1: Collection classes in GJ

www.manaraa.com

interface Comparable<A> fpublic int compareTo (A that);gclass Byte implements Comparable<Byte> fprivate byte value;public Byte (byte value) f this.value = value; gpublic byte byteValue () f return value; gpublic int compareTo (Byte that) freturn this.value { that.value;ggclass Collections fpublic static <A implements Comparable<A>>A max (Collection<A> xs) fIterator<A> xi = xs.iterator();A w = xi.next();while (xi.hasNext()) fA x = xi.next();if (w.compareTo(x) < 0) w = x;greturn w;gg Figure 2: Generic methods and boundsbe omitted. In general, nested classes may have typeparameters, and (if not static) also inherit type param-eters from any surrounding class.Angle brackets were chosen for type parameters sincethey are familiar to C++ users, and each of the otherform of brackets may lead to confusion. If round brack-ets are used, it is di�cult to distinguish type and valueparameters. If square brackets are used, it is di�cultto distinguish type parameters and array dimensions.If curly brackets are used, it is di�cult to distinguishtype parameters from class bodies.Phrases like LinkedList<LinkedList<String>> pose aproblem to the parser, since >> is treated as a singlelexeme. (Similarly for >>>.) In C++, users are re-quired to add extra spaces to avoid this problem. InGJ, the grammar has been modi�ed so that no spacesare required.The example in Figure 2 shows another part of thecollection class library of JDK 1.2 expressed in GJ.There is an interface Comparable<A> for objects thatcan be compared to other objects of type A. Class Byteimplements this interface with itself as the type param-eter, hence, bytes can be compared with themselves.The last class in Figure 2 de�nes a static methodmax that returns the maximum element of a non-empty

collection. This method demonstrates two features: itis a generic method, and also has a bounded type pa-rameter. The method is generic because it applies toa variety of types. To declare a generic method, thequanti�ed type variables are written in angle bracketspreceding the method signature and body. The type isautomatically instantiated at point of use. For instance,if ys has type Collection<Byte> we may writeByte x = Collections.max(ys);and the parameter A of max is inferred to be Byte.The type parameter A is bounded because it variesnot over all types, but only over types that are com-parable to themselves. For instance, the parametermay be instantiated to Byte because Byte implementsComparable<Byte>.Any type parameter (to an interface, class, or genericmethod) may be bounded. A bound is indicated by fol-lowing the parameter with the keyword implementsand an interface or extends and a class. The bound-ing interface or class may itself be parameterized, andmay include type variables appearing elsewhere in theparameter section. Recursion or mutual recursion be-tween parameters is allowed | that is, GJ supportsF-bounded polymorphism [CCHOM89]. Omitting abound is equivalent to using the bound Object.3 Translating GJTo translate from GJ to the Java programming lan-guage, one replaces each type by its erasure. The era-sure of a parametric type is obtained by deleting theparameter (so LinkedList<A> erases to LinkedList), theerasure of a non-parametric type is the type itself (soString erases to String) and the erasure of a type param-eter is the erasure of its bound (so A in Collections.maxerases to Comparable).Translating the GJ code for collection classes in Fig-ures 1 and 2 yields the code in Figures 3 and 4. Thetranslated code is identical to the original collectionclass code written using the generic idiom. This prop-erty is essential { it means that a GJ program compiledagainst the parameterized collection library will run ona browser that contains the original collection library.The translation of a method erases all argumenttypes and the return type, and inserts type casts whererequired. A cast is inserted in a method call when theresult type of the method is a type parameter, or in a�eld access when the type of the �eld is a type param-eter. For example, compare Test.main in Figure 1 withits translation in Figure 3, where a cast is inserted intothe call of next.The translation inserts bridge methods to ensureoverriding works correctly. A bridge is required when-

www.manaraa.com

interface Collection fpublic void add (Object x);public Iterator iterator ();ginterface Iterator fpublic Object next ();public boolean hasNext ();gclass NoSuchElementException extends RuntimeException fgclass LinkedList implements Collection fprotected class Node fObject elt;Node next = null;Node (Object elt) f this.elt = elt; ggprotected Node head = null, tail = null;public LinkedList () fgpublic void add (Object elt) fif (head == null) fhead = new Node(elt); tail = head;g else ftail.next = new Node(elt); tail = tail.next;ggpublic Iterator iterator () freturn new Iterator () fprotected Node ptr = head;public boolean hasNext () f return ptr != null; gpublic Object next () fif (ptr != null) fObject elt = ptr.elt; ptr = ptr.next; return elt;g else fthrow new NoSuchElementException ();ggg;ggclass Test fpublic static void main (String[] args) fLinkedList ys = new LinkedList();ys.add("zero"); ys.add("one");String y = (String)ys.iterator().next();gg Figure 3: Translation of collection classes

www.manaraa.com

interface Comparable fpublic int compareTo (Object that);gclass Byte implements Comparable fprivate byte value;public Byte (byte value) f this.value = value; gpublic byte byteValue () f return value; gpublic int compareTo (Byte that) freturn this.value { that.value;gpublic int compareTo (Object that) freturn this.compareTo((Byte)that);ggclass Collections fpublic static Comparable max (Collection xs) fIterator xi = xs.iterator();Comparable w = (Comparable)xi.next();while (xi.hasNext()) fComparable x = (Comparable)xi.next();if (w.compareTo(x) < 0) w = x;greturn w;ggFigure 4: Translation of generic methods and boundsever a subclass (non-trivially) instantiates a type vari-able in a superclass. For example, erasure of compareToin Comparable yields a method that takes an Object,while erasure of compareTo in Byte yields a methodthat takes a Byte. Since overriding occurs only whenmethod signatures match exactly, a bridge method forcompareTo is introduced into the translation of Bytethat takes an Object and casts it to a Byte. Overloadingallows the bridge and the original method to share thesame name.Again, the translation from GJ yields code identi-cal to the original collection class library in JDK 1.2,including the bridge methods.3.1 A bridge too farA problematic case of bridging may arise if a type pa-rameter appears in the result but not the arguments ofan overridden method.Here is a class that implements the Iterator interfacein Figure 1.

class Interval implements Iterator<Integer> fprivate int i, n;public Interval (int l, int u) f i = l; n = u; gpublic boolean hasNext () f return (i <= n); gpublic Integer next () f return new Integer(i++); ggHere the next method of the class returns an Integer, tomatch the instantiation of the type parameter.The translation yields the following. As one wouldexpect, a bridge must be added to the Interval class.interface Iterator fpublic boolean hasNext ();public Object next ();gclass Interval implements Iterator fprivate int i, n;public Interval (int l, int u) f i = l; n = u; gpublic boolean hasNext () f return (i <= n); gpublic Integer next/�1�/ () freturn new Integer(i++);g// bridgepublic Object next/�2�/ () freturn next/�1�/();ggUnfortunately, this is not legal Java source code, as thetwo versions of next cannot be distinguished becausethey have identical arguments. The code above distin-guishes our intention by su�xing the declarations andcalls with /�1�/ and /�2�/ as appropriate.Fortunately, the two versions of next can be distin-guished in the JVM, which identi�es methods using asignature that includes the result type. This situationrepresents the one place where GJ must be de�ned bytranslation directly into JVM byte code.GJ also permits covariant overriding: an overridingmethod may have a result type that is a subtype of themethod it overrides (whereas it must match exactly inthe unextended Java programming language). Here isan example.class C implements Cloneable fpublic C copy () f return (C)this.clone(); ggclass D extends C implements Cloneable fpublic D copy () f return (D)this.clone(); ggTranslation introduces a bridge method into the secondclass.

www.manaraa.com

class D extends C implements Cloneable fpublic D copy/�1�/ () f return (D)this.clone(); g// bridgepublic C copy/�2�/ () f return this.copy/�1�/(); ggThis is implemented using the same technique as above.4 SubtypingFor purposes of type comparison, subtyping is invari-ant for parameterized types. For instance, even thoughthe class String is a subtype of Object, the param-eterized type LinkedList<String> is not a subtype ofLinkedList<Object>. In comparison, arrays use covari-ant subtyping, so the array type String[] is a subtypeof Object[].Invariant subtyping ensures that the type constraintsenforced by GJ are not violated. Consider the followingcode. class Loophole fpublic static String loophole (Byte y) fLinkedList<String> xs =new LinkedList<String>();LinkedList<Object> ys =xs; // compile{time errorys.add(y);return xs.iterator().next();ggThis code is illegal, because otherwise it would violatethe type constraints by returning a byte when a stringis expected. Both the method call (which adds a byte,which is itself an object, to a list of objects) and thereturn (which extracts a string from a list of strings) areunobjectionable, so it must be the assignment (whichaliases a list of string to a list of objects) that is atfault.It is instructive to compare the above to analogouscode for arrays.class Loophole fpublic static String loophole (Byte y) fString[] xs = new String[1];Object[] ys = xs;ys[0] = y; // run{time errorreturn xs[0];ggNow the code is legal, but raises an array store excep-tion. Observe that the type safety of covariant subtyp-ing depends upon the fact that an array carries its typeat run-time, making the store check possible. This ap-proach is not viable for parameterized types, since typeparameters are not available at run-time.

class ListFactory fpublic <A> LinkedList<A> empty () freturn new LinkedList<A>();gpublic <A> LinkedList<A> singleton (A x) fLinkedList<A> xs = new LinkedList<A>();xs.add(x);return xs;gpublic <A> LinkedList<A> doublet (A x, A y) fLinkedList<A> xs = new LinkedList<A>();xs.add(x); xs.add(y);return xs;ggclass Test fstatic ListFactory f = new ListFactory();public static void main (String[] args) fLinkedList<Number> zs =f.doublet(new Integer(1), new Float(1.0));LinkedList<String> ys = f.singleton(null);LinkedList<Byte> xs = f.empty();LinkedList<Object> err =f.doublet("abc", new Integer(1));// compile{time errorgg Figure 5: Example of inferenceIt should be noted that explicitly declared subtyp-ing is not a problem. For instance, it is �ne to passa LinkedList<String> when a Collection<String> is ex-pected.5 Type Parameter InferenceGJ includes a novel type parameter inference algorithmthat permits one to elide type parameters to polymor-phic method calls. Such type parameters can safely beomitted since they are erased by the translation anyway,and therefore cannot carry any operational meaning.Type parameters are inferred for a parametricmethod call by choosing the smallest type parameterthat yields a valid call. As an example, consider thethe code in Figure 5, which de�nes factory methods forlists with zero, one, and two elements.In the example above, the call to doublet with aninteger and a oat as arguments infers that the typeparameter A is Number. If there is no unique smallesttype, inference fails, as in the call to doublet with astring and an integer (which have both Comparable and

www.manaraa.com

class Cell<A> fpublic A value;public Cell (A v) f value = v; gpublic static <A> Cell<A> make (A x) freturn new Cell(x);ggclass Pair<B,C> fpublic B fst;public C snd;public Pair (B x, C y) f fst = x; snd = y; gpublic static <D> Pair<D,D> duplicate (D x) freturn new Pair<D,D>(x,x);ggclass Loophole fpublic static String loophole (Byte y) fPair<Cell<String>,Cell<Byte>> p =Pair.duplicate(Cell.make(null));// compile{time errorp.snd.value = y; return p.fst.value;gpublic static String permitted (String x) fPair<Cell<String>,Cell<String>> p =Pair.duplicate(Cell.make((String)null));p.fst.value = x; return p.snd.value;gg Figure 6: Illegal situation for inference.Serializable as common supertypes).This rule needs to be generalized to the cases wherethere are no argument types involving an inferred vari-able or where some argument is null. To support in-ference in these cases, the type inferencer may bind atype variable to the special `bottom' type �, the typeof null. The type � is a subtype of every reference type.This type is used only by the type inference algorithm,and cannot appear in type declarations in GJ programs.Further, any type containing � is regarded as a subtypeof any type that results from replacing � with any otherreference type. (This is the one exception to the rule ofinvariant subtyping.) Thus, LinkedList<�> is a subtypeof LinkedList<String>, and Pair<Byte,�> is a subtype ofPair<Byte,Byte>.For instance, in the second and third calls of methodmain above, the type parameter is inferred to be �. Theassignments are valid since LinkedList<�> is a subtypeof both LinkedList<Byte> and LinkedList<String>.An additional linearity restriction is required: a typeparameter cannot be instantiated to � if it appears more

interface I fginterface J fginterface K extends I fginterface L extends I, J fgclass X fstatic <A> A choose(A x, A y) freturn (x.hash() < y.hash())?x:y;gstatic void test (K k, L l) fI i = choose(k, l); // okggFigure 7: Near-ambiguous situation for inferencethan once in the result type. To see why this is neces-sary, consider the code in Figure 6. The call to duplicatein loophole is illegal, because the smallest choice for Dis �, but D appears twice in the result type of duplicate.On the other hand, the call to duplicate in permitted isok, because the cast ensures the smallest choice for Dis String. But without the cast, the smallest choice is �and the call would be illegal. Without the restriction,loophole would circumvent the type system, making itpossible to treat a string as a byte.General covariance may lead to an unsound type sys-tem, so we have to argue carefully that our type systemwith its restricted form of covariance remains sound.The argument goes as follows: since one cannot declarevariables of type T<...�...>, all one can do with a valueof that type is assign or pass it once to a variable orparameter of some other type. There are now threepossibilities, depending on the variable's type:� The variable's type is an unparameterized super-type of T. In this case the assignment is clearlysound.� The variable's type is T<...U...> with some refer-ence type U in the position of �. Now, the onlyvalue that populates type � is null, which is alsoa value of every reference type U. Furthermore,any method in type T<...�...> with an argumentV<...�...> that contains the bottom type would haveto be parametric in this type, so that it couldequally well be applied to V<...U...>. Hence, anyvalue of type T<...�...> will also be a value of typeT<...U...>, and the assignment is sound.� The variable's type is a type variable, A. Then codethat accesses the variable works for any type Amay be instantiated to, so the code itself cannot

www.manaraa.com

give rise to type errors. Furthermore, if the vari-able appears in a method, by the linearity restric-tion, the method's formal result type will contain atmost one occurrence of A, so the actual type of themethod application is again of the form T'<...�...>.Our type parameter inference scheme is similar toPierce and Turner's local type inference [PT98]. Pierceand Turner only consider covariant type constructors,which is a sensible assumption for the predominantlyfunctional languages they are dealing with. For GJ,with its exclusive use of invariant type constructors, ourspecial treatment of � is essential to make type infer-ence work. Experience has so far shown that it worksvery well indeed. For instance, in the whole GJ com-piler (consisting of about 20,000 lines of heavily genericcode), there was not a single instance where type infer-ence had to be helped by an explicit parameterizationor type cast.It is instructive to compare GJ's local type infer-ence with the constraint-based inference of the Hindley-Milner system [Mil78] or its extensions to subtyping[AW93, EST95]. In essence, a type T<...�...> in oursystem would correspond to a type T<...A...> in theHindley-Milner system, where A is a fresh type variablethat is used nowhere else. If a type had more than oneoccurrence of �, each occurrence would be replaced bya di�erent type variable. Then our use of subtyping fortypes containing � corresponds to instantiations of typevariables in the Hindley-Milner system. The linearitycondition makes sure that � types are not duplicatedwhen types for method calls are inferred, so that each� type can be mapped back to a fresh type variable inthe method's result type. Finally, the restriction that� types cannot be declared by the user roughly cor-responds to the variable polymorphism restriction forHindley-Milner [Wri95], which ensures that values con-taining mutable references cannot be polymorphic.Note that any inference algorithm is subject to prob-lems with ambiguity. Consider the code in Figure 7.Here the type inferencer can determine that the formalparameter A corresponds to the actual parameter I inthe call of choose in the marked line. However, saythat the de�nition of K is later changed, so that K alsoextends J. interface K extends I, J fgNow the call to choose becomes ambiguous. Thus eventhough the programmer has taken care to preserve thesupertypes and structure of interface K, code using itbreaks due to the change. This is an undesirable prop-erty from a software engineering perspective. However,the Java programming language already su�ers from asimilar problem with regard to overloading, so addingtype inference does not introduce any new holes. We

believe the convenience of inference outweighs this at-tendant infelicity.6 Security ImplicationsSince the homogeneous translation erases type informa-tion, it opens a potential security hole at run-time. Thehole can be �lled, but to do that one needs to be awareof it. Consider the following example, which is due toAgesen, Freund, and Mitchell [AFM97]:class SecureChannel extends Channel fpublic String read ();gclass C fpublic LinkedList<SecureChannel> cs;...gSince LinkedList<SecureChannel> gets erased to justLinkedList, it is possible for an attacker to add a non-secure channel to the list, which might be used as a wayto leak information from a secure system. If the attackerwas itself written in GJ, this would be prevented by thegeneric type system. But the attacker could be writtennot in GJ but in the Java programming language orthe JVM byte code language, in which case neither thecompiler nor the run-time system would detect a typesystem violation.To address this problem, a programmer needs to pre-vent the information about the type parameter from be-ing lost by erasure. If the class in questions does notexport any parameterized �elds this can be achieved bydeclaring a specialized type SecureChannelList, whichextends type LinkedList<SecureChannel>. The special-ization inherits all �elds and methods from its super-type, and its constructor simply forwards to the analo-gous constructor in the supertype:class SecureChannelListextends LinkedList<SecureChannel> fSecureChannelList () f super(); ggclass C fSecureChannelList cs;...gUnlike LinkedList<SecureChannel>, SecureChannelListgets translated to itself, so no type information is lost.Furthermore, GJ's translation scheme for bridge meth-ods ensures that argument types are properly checkedat run-time. Here is the translation of class SecureChan-nelList:

www.manaraa.com

public static Object[] newInstance (Object[] a, int n) freturn (Object[])Array.newInstance(a.getClass().getComponentType(), n);g Figure 8: Creating a new instance of an arrayclass SecureChannelList extends LinkedList fSecureChannelList () f super(); gpublic void add (Object x) fsuper.add((SecureChannel)x);ggNote the inserted bridge method for LinkedList.addwhich checks at run-time that the passed channel issecure. The same scheme cannot be applied to pub-lic �elds of parameterized types, since access to those�elds is not encapsulated by bridge methods.Type specialization is a general method for main-taining type parameter information which would other-wise be lost by erasure. Since the heterogeneous trans-lation e�ectively applies type specialization everywhere,it looks like a better �t from a security perspective. Thisis also argued by Agesen et al. [AFM97].Perhaps surprisingly, the heterogeneous translationnevertheless �ts poorly with the security model of theJava virtual machine. The problem, �rst reported in[OR98], lies in the package based visibility model fortypes, which can interfere with automatic type special-ization.The JVM security model supports only two kinds ofvisibility for top-level classes: package-wide and pub-lic visibility. It is not possible to refer to a class out-side a package unless the class is declared public. TheJVM speci�cation [LY96] requires the virtual machineto throw an IllegalAccessError if a class refers toany class that is in another package and is not public.Sometimes these rules make it impossible to �nd apackage where a heterogeneous type instantiation canbe placed. Consider an instantiation p.C<q.D> of a pa-rameterized class C de�ned in package p, applied toa parameter class D de�ned in a di�erent package q.There are two possibilities: either class D must be pub-lic (in which case we can place the instantiation in pack-age p), or else the body of class C must refer only topublic classes (in which case we can place the instantia-tion in package q). If neither of these cases apply (thatis, D is private in its package and C refers to privateclasses in its package), then there is no package in whichone can place the instantiation p.C<q.D>, hence the het-erogeneous translation must fail. An illegal access errorwould be raised no matter in which package p.C<q.D> isplaced. Since class accesses are checked when identi�ers

are resolved at run-time, the error would occur irrespec-tive of whether classes are specialized at compile-timeor run-time.This problem makes it di�cult to use packages ef-fectively in the presence of the heterogenous transla-tion. Further, even if one could change the JVM se-curity model, it is not clear what change could �x thisproblem. The problem does not arise for the homoge-nous translation.7 RestrictionsGJ's translation by type erasure requires some languagerestrictions which would not be necessary if a transla-tion maintained types at run-time. The restrictions af-fect object and array creation, and casts and instancetests.7.1 Object and array creationA new expression where the type is a type variableis illegal. Thus, new A() is illegal, when A is a typevariable. Such expressions cannot be executed becausetype parameters are not available at run-time. This isno great loss, since such generic creation is of limitedvalue. Rather than create an object of variable type,one should pass in an object with a suitable method forcreating new objects (commonly called a factory ob-ject).A new expression where the type is an array overa type variable generates an unchecked warning. Thus,new A[n] is unchecked when A is a type variable. Suchexpressions cannot be executed with the usual seman-tics, since type parameters are not available at run-time.Rather than create arrays of variable type, it is rec-ommended that one should use the Vector or ArrayListclasses from the collection library, or pass in an arrayof the same type to be used as a model at run-time (apoor man's factory object).To facilitate the latter, the following method is pro-vided by the gj.lang.reect.Array class.public static <A> A[] newInstance (A[] a, int n)A call returns a new array with the same run-time typeas a, with length n and each location initialized to null.This method allows an array to act as a factory for

www.manaraa.com

more arrays of the same type. The erasure of the abovemethod can be implemented in terms of existing reec-tion primitives as shown in Figure 8. But the types inthe �gure are not parametric, so the typed version isadded to the GJ library. It can be implemented usingthe retro�tting feature discussed in Section 9.For some purposes, such as de�ning Vector itself, it isnecessary to create new arrays of variable type. This iswhy such expressions are unchecked rather than illegal.In this case the translation replaces the type variableby its bound, as usual. Thus, new A[n] translates tonew Object[n], when A is a type variable bounded byObject.Creating a new array of variable type must generatean unchecked warning to indicate that the type sound-ness constraints normally enforced by GJ may be vio-lated. Consider the following code.class BadArray fpublic static <A> A[] singleton (A x) freturn new A[]f x g; // unchecked warninggpublic static void main (String[] args) fString[] a = singleton("zero");// run{time exceptionggThis code passes the compiler, but an unchecked warn-ing is issued for the expression new A[]f x g. In thiscase, the creation expression does indeed violate GJ'stype constraints, as when called with A bound to Stringit creates an array with run-time type Object[] ratherthan String[]. Here is the translation of the above code.class BadArray fpublic static Object[] singleton (Object x) freturn new Object[]f x g;gpublic static void main (String[] args) fString[] a = (String[])singleton("zero");// run{time exceptionggIt is important to recognize that the run-time type sys-tem of the JVM remains secure, as the last line in thetranslated code fails at run-time.It is always safe to create a new array of variable typeif one takes care to ensure the array does not escape thescope of the type variable. The method above is unsafebecause the new array escapes the scope of the typevariable A attached to the singleton method.As an example of sensible use of arrays, considerthe vector class given in Figure 9 (simpli�ed from thecollection library).

class Vector<A> fpublic �nal int MIN CAPACITY = 4;protected int n;protected A[] a;public Vector () fn = 0;a = new A[MIN CAPACITY];gpublic void add (A x) fif (n == a.length) fA[] b = new A[2�n];for (int i = 0; i < n; i++) b[i] = a[i];a = b;ga[n++] = x;gpublic A get (int i) fif (0 <= i && i < n) return a[i];else throw new IndexOutOfBoundsException();gpublic void set (int i, A x) fif (0 <= i && i < n) a[i] = x;else throw new IndexOutOfBoundsException();gpublic int size () f return n; gpublic A[] asArray (A[] b) fif (b.length < n) b = Array.newInstance(b,n);for (int i = 0; i < n; i++) b[i] = a[i];for (int i = n; i < b.length; i++) b[i] = null;return b;gg Figure 9: Vector classThe array a of type A[] always has run-time typeObject[], but never leaves the scope of the class. Themethod asArray returns an array that leaves the scopeof the class, but this array is either the argument arrayb (if b is large enough) or is an array with the same run-time type as b (created by newInstance). As usual, thecode is translated by replacing A everywhere by Object,including replacing A[] by Object[].7.2 Casts and instance testsSince type parameters are not available at run-time, notall casts and instance tests on parameterized types arepermitted. It is legal to include parameters in a castor instance test if the parameters are determined by acombination of information known at compile-time anddeterminable at run-time.

www.manaraa.com

class Convert fpublic static <A> Collection<A>up (LinkedList<A> xs) freturn (Collection<A>)xs;gpublic static <A> LinkedList<A>down (Collection<A> xs) fif (xs instanceof LinkedList<A>)return (LinkedList<A>)xs;elsethrow new ConvertException();ggIn method up, the cast could be omitted, but is includedfor clarity. In method down, run-time information canbe used to check whether the collection is a linked list;if it is a linked list, then the compile-time constraintsensure that the type parameters match.Parameterized types cannot be used in casts or in-stance tests when there is no way to verify the param-eter. The following is illegal.class BadConvert fpublic static Object up (LinkedList<String> xs) freturn (Object)xs;gpublic static LinkedList<String> down (Object o) fif (o instanceof LinkedList<String>)// compile{time errorreturn (LinkedList<String>)o;// compile{time errorelse throw new ConvertException();ggHere the marked lines indicate compile-time errors.There are two possible workarounds for this problem.One is to use type specialization, as in Section 6, creat-ing a new class that extends LinkedList<String>.class LinkedListString extends LinkedList<String> f...gThe other is to create a wrapper class, with a �eld oftype LinkedList<String>.class LinkedListStringWrapper fLinkedList<String> contents;gIn either case, the resulting class has no type parame-ters, and may always be used as the target of a cast.8 Raw typesIt is occasionally necessary to refer to a parameterizedtype stripped of its parameters, which we call a rawtype. Raw types maintain consistency with legacy code:

class LinkedList<A> implements Collection<A> f...public boolean equals (Object that) fif (!that instanceof LinkedList) return false;Iterator<A> xi = this.iterator();Iterator yi = ((LinkedList)that).iterator();while (xi.hasNext() && yi.hasNext()) fA x = xi.next();Object y = yi.next();if (!(x == null ? y == null : x.equals(y)))return false;greturn !xi.hasNext() && !yi.hasNext();gg Figure 10: Equality using raw typesfor instance, new code may refer to the parameterizedtype Collection<A> while legacy code will refer to theraw type Collection. Raw types are also useful in castand instance tests, where there may not be adequateinformation at run-time to check the full parameterizedtype.Figure 10 de�nes an extension to the linked list classof Section 2 to de�ne equality. One might expect theobject passed to equals to have the type LinkedList<A>,but a cast to that type cannot be checked, since typeparameters are not available at run-time. However, itis possible to check a cast to the raw type LinkedList.Roughly speaking, the raw type LinkedList correspondsto the type LinkedList for some indeterminate valueof B. In this way, it resembles the existential types usedin Pizza. But while Pizza's existential types are usefulfor writing methods such as equality, they are no helpat all for interfacing with legacy code, which raw typesdo with ease.In the above, the method call iterator() with receiverthis of type List<A> returns a value of type Iterator<A>,while the same method with receiver (List)that of rawtype List returns a value of raw type Iterator. Simi-larly, the method call next() with receiver xi of typeIterator<A> returns a value of type A, while the samemethod with receiver yi of type Iterator returns a valueof type Object.In general, the signature of a member of an objectof raw type is the erasure of the signature of the samemember for an object of parameterized type. Further, avalue of parameterized type is assignable to a variableof the corresponding raw type. A value of raw typemay also be assigned to a variable of any correspondingparameterized type, but such an assignment generates

www.manaraa.com

an unchecked warning.Some method calls to objects of raw type must alsogenerate unchecked warnings, to indicate that the typesoundness constraints normally enforced by GJ may beviolated. Consider the following code.class Loophole fpublic static String loophole (Byte y) fLinkedList<String> xs =new LinkedList<String>();LinkedList ys = xs;ys.add(y); // unchecked warningreturn xs.iterator().next();ggThis code passes the compiler, but an unchecked warn-ing is issued for the call to the add method. In thiscase, the call does indeed violate GJ's type constraints,as it adds a byte y to the list of strings xs. Here is thetranslation of the above code.class Loophole fpublic static String loophole (Byte y) fLinkedList xs = new LinkedList();LinkedList ys = xs;ys.add(y);return (String)xs.iterator().next();// run{time exceptionggThe run-time type system of the JVM remains secure,as the last line in the translated code fails at run-time.The rules for generating unchecked warnings for rawtypes are:� A method call to a raw type generates anunchecked warning if the erasure changes the ar-gument types.� A �eld assignment to a raw type generates anunchecked warning if erasure changes the �eld type.No unchecked warning is required for a method callwhen only the result type changes, for reading from a�eld, or for a constructor call on a raw type. For ex-ample, in the equality test for linked lists given above,none of the raw method calls is unchecked, since theyall have empty argument lists, so erasure leaves the typeunchanged. But in the loophole method, the call to addis unchecked, since erasure changes the argument typefrom A to Object.The unchecked method calls and �eld accesses maybe needed to interface with legacy code, which is whythey are not illegal. For example, one could com-pile the GJ versions of Collection<A>, Interface<A>,LinkedList<A> and Comparator<A> with the unparam-eterized version of Collections. The test code will com-pile, but generate a unchecked warning for the method

calls to compare or compareTo, though in this case thecalls happen to be sound.The rule used by GJ to generate unchecked warningsis conservative. In practice, when interfacing legacycode to new GJ code, many calls may be labelled asunchecked that are nevertheless sound. Proliferationof unchecked warnings can be avoided by updating thelegacy code, or by using the retro�tting technique dis-cussed in the next section.9 Retro�ttingTo support independent compilation, the GJ compilermust store extra type information at compile-time. For-tunately, the JVM class �le format supports adding ex-tra attributes. Information about parameterized typesis stored in a `Signature' attribute, which is read andwritten by the GJ compiler, but ignored by the JVM atload-time.GJ is designed so that new code will run with oldlibraries. For instance, new code may refer to a param-eterized linked list type, but run with old code (sourceor binary) that implements an unparameterized linkedlist type using the generic idiom.To make this work smoothly, the GJ compiler has aretro�tting mode that can be used to add `Signature' at-tributes to existing code. Type information is speci�edin a source �le that contains only type information for�elds and methods. For instance, say one has a class �lefor the unparameterized version of LinkedList, but onewishes to use it as if it has parameterized types. Thiscan be done using the following retro�tting �le.class LinkedList<A> implements Collection<A> fpublic LinkedList ();public void add (A elt);public Iterator<A> iterator ();gThe GJ compiler takes the above �le as source, andlooks up the unparameterized class �le along a speci-�ed classpath. It then outputs the new class �le, in-cluding an appropriate `Signature' attribute, in a direc-tory speci�ed by the user. (In the current GJ compiler,these are speci�ed using the ags {retro�t path and {ddirectory). At compile-time, the classpath must specifythe retro�tted class �le. At run-time, the classpath mayspecify either the retro�tted or the legacy class �le. Inparticular, new code can compile against the retro�ttedlinked list class �le, then run in a browser containingthe legacy linked list library.The entire collection class library available inJDK 1.2 has been retro�tted in this way. All of the pub-lic methods in the JDK 1.2 collection classes | withouta single exception | can be given sensible parameter-ized type signatures in GJ. Only the type signatures

www.manaraa.com

were rewritten, the legacy code did not even need tobe recompiled. Since signatures are more than an or-der of magnitude more compact than code, this savesconsiderable e�ort.In most cases, one would anticipate eventuallyrewriting the source library with parameterized types.The advantage of the compatibility o�ered by GJ is thatone may schedule this rewriting at a convenient time |it is not necessary to rewrite all legacy code before newcode can exploit parametric types.We anticipate that most rewriting of code will bestraightforward, consisting of adding type parametersand replacing some occurrences of Object by suitabletype variables. However, not all code may be so easy toupgrade.For instance, in the collection class library the imple-mentation of �nite maps includes code that may returneither the key or value of a map entry. This is well-typed using the generic idiom with class Map, becauseboth the key and value have type Object. But it isnot well-typed using parameterized types with the classMap<K,V>, where the key has type K and the value hastype V. So this portion of the code must be restruc-tured to update the source to GJ, providing separatecode to process keys and values. This need to restruc-ture a (usually small) portion of the code shows whythe exibility of interfacing with legacy code o�ered byGJ is so helpful.10 ImplementationGJ has been implemented and is publicly available froma number of web sites [GJ98a]. The GJ compiler is origi-nally derived from the Pizza compiler, but has been sub-stantially redesigned. It is itself written in GJ. Generictypes and methods were essential in its implementation.For instance, the compiler makes heavy use of genericcontainer types, such as linked lists, dictionaries, anditerators.Besides these uses, the compiler also relies on genericmethods for its central tree traversal routines, which areimplemented using the visitor pattern [GHJV94]. ThePizza and GJ compilers are both structured as a seriesof passes over an abstract syntax tree. The Pizza com-piler made extensive use of algebraic data types andpattern matching, which are supported in Pizza butnot in the Java programming language. The syntaxtree in the Pizza compiler is represented as an algebraicdata type with a case for each of Pizza's syntactic con-structs. Each pass consists of a recursive method with acase statement that pattern matches against all relevantcases in the tree type. It is thus possible to decouple thetraversal algorithms from the tree de�nition itself. Thismakes sense since we would expect the language proces-

sors (implemented by traversal passes) to change morefrequently than the language they process (representedby the tree itself).In GJ, algebraic types and pattern matching arenot available. Instead, the visitor pattern is appliedto achieve an analogous program decomposition. Fig-ure 11 gives an overview. There is an abstract class Treewith subclasses for each of GJ's syntactic constructs.In total, there are 38 such subclasses, although onlyone is shown. The base class and each subclass de�nea method visit, which takes a visitor object and ap-plies a method in the visitor which corresponds to thesubclass being de�ned. All such visitor methods usethe overloaded name case; they are distinguished bythe subclass of Tree which they take as �rst argument.The abstract visitor class contains a case method foreach of the tree subclasses. Concrete subclasses overridethose case methods that can possibly be encounteredduring traversal.To make this standard idiom widely applicable, thevisitor class is generic, with two type parameters. The Rparameter stands for the result type of the case meth-ods in a concrete visitor. The A parameter stands forthe type of an additional argument which those methodstake. For instance, Figure 11 shows a fragment of thetree attribution visitor. Each case method in that visi-tor takes an environment (of type Env<AttrContext>) asadditional parameter and each method returns a type(of type Type). Other visitor passes in the compilerwould use di�erent argument and result types. Missingresult types or argument types get instantiated to classVoid. Multiple results or arguments are expressed usingtuple types such as Pair.Since visit in class Tree needs to be able to apply dif-ferent parameterized instantiations of the visitor class,it needs to be polymorphic itself. Consequently, its typein Tree is: <R,A> R visit (Visitor<R,A> v, A arg)With this technique, the application of the visitor pat-tern in the compiler is quite natural. If one tried insteadto apply the pattern in this form in a language withoutgenerics using the generic idiom, the abundance of re-quired type casts would make the concept considerablyharder to use. It is also worth noting that the use ofpolymorphic methods was essential to achieve a generictyping of visitors; parameterized types alone are notenough.11 ConclusionsWe have presented GJ, an extension of the Java pro-gramming language with generic types and methods.

www.manaraa.com

abstract class Tree fpublic <R,A> R visit (Visitor<R,A> v, A arg) freturn v. case(this, arg);gstatic class Return extends Tree fpublic Tree expr;public Return(Tree expr) f this.expr = expr; gpublic <R,A> R visit (Visitor<R,A> v, A arg) freturn v. case(this, arg);ggstatic abstract class Visitor<R,A> fpublic R case(Tree that, A arg) fthrow new InternalError("unexpected: " + that);gpublic R case(Return that, A arg) freturn case((Tree)that, arg);gpublic R case(Throw that, A arg) freturn case((Tree)that, arg);g// other cases ...ggpublic class Attrextends Tree.Visitor<Type,Env<AttrContext>> f...public Type case(Return tree,Env<AttrContext> env) fType owntype;// code for attribution of return statements ...return owntype;g// other attribution cases ...g Figure 11: Visitors in the GJ compiler

GJ is implemented by translating back to the unex-tended language, repeating the idiom used by program-mers to simulate generics. For this reason, it is easy tointerface GJ with legacy code, and it is straightforwardto use reection on GJ programs.The design of Pizza is strongly constrained by thecriterion of backward compatibility with the Java pro-gramming language. The design of GJ is further con-strained by the criterion of smooth interfacing withlegacy code, and of forward compatibility with a lan-guage design (such as NextGen [CS98]) that maintainsinformation about type parameters at run-time. (In-deed, one referee characterized this paper as `polymor-phism with one hand tied behind your back'.) Remark-ably, even though the constraints on GJ are tighter thanthose on Pizza, it's design is arguably simpler. GJ's in-ference algorithm is simpler than Pizza's, and GJ's useof raw types is simpler and more powerful than Pizza'suse of existential types.There are two main alternatives to the design pur-sued in GJ.The �rst is to use the heterogenous translation. Aswe saw in Section 6, this alternative either makes itdi�cult to use packages e�ectively, or requires changeto the security model of the JVM.The second is to pass type information at run-time,as explored in the NextGen design of Cartwright andSteele [CS98]. GJ's forward compatibility makes it pos-sible to arrange for NextGen to be a superset of GJ:every legal GJ program is also a legal NextGen pro-gram with an identical meaning. (The one exception isthat NextGen, unlike GJ, changes some properties of aprogram under reection.)Both GJ and NextGen have advantages. NextGen ismore expressive than GJ, in that none of the restrictionsdiscussed in Section 7 need be imposed on NextGen. Inparticular, NextGen can implement new A[n] by al-locating a new array with the correct run-time typeinformation, avoiding the severe restrictions placed onthis construct in GJ. And NextGen can implement aninstance test or cast to a parameterized type such asLinkedList<String>without the workarounds required byGJ. Arguably, the use of run-time types in NextGen isa better �t with the Java programming language, whichmaintains run-time type information about the class ofan object and the type of elements in an array.On the other hand, GJ has a considerably simplerdesign that NextGen. And since GJ maintains no typeinformation at run-time, it may be more e�cient thanNextGen, although measurement is required to deter-mine if this di�erence is signi�cant.More importantly, GJ achieves greater compatibilitythan NextGen with legacy code. Not only is GJ back-ward compatible with the Java programming language

www.manaraa.com

and forward compatible with NextGen, but GJ also hasbackward and forward compatibility with legacy code.It has backward compatibility, in that legacy code us-ing the generic idiom may call new parameterized li-braries, and in that newly created objects of parame-terized type may be passed to legacy code that uses thegeneric idiom. And it has forward compatibility, in thatnew parameterized code may call legacy libraries thatuse the generic idiom, and in that objects created bylegacy code using the generic idiom may be passed tonew code that expects objects of parameterized type.Roughly speaking, GJ achieves backward compatibilitythrough raw types, and forward compatibility throughretro�tting.In contrast, NextGen has only backward compati-bility. New code cannot use legacy libraries, and ob-jects created by legacy code can be passed to new codeonly via adaptor methods that convert legacy objects(with no run-time type information) into NextGen ob-jects (with run-time type information speci�ed for eachtype parameter). The combination of forward and back-ward compatibility in GJ makes it considerably easierto manage the process of upgrading from legacy to pa-rameterized code, and we believe that this is the chiefadvantage of GJ over NextGen.AcknowledgementsThanks to Enno Runne and Matthias Zenger, for theirinput on implementation and security aspects, and toJoshua Bloch, Corky Cartwright, and Guy Steele, fortheir support and many productive discussions. Thanksalso to the members of the Java-genericity and Pizza-users mailing lists, for valuable criticism and continuedfeedback. Finally, thanks to the anonymous referees fortheir cogent comments.References[AFM97] Ole Agesen, Stephen Freund, and John C.Mitchell. Adding parameterized types to Java. Confer-ence on Object-Oriented Programming, Systems, Lan-guages and Applications, pages 215-230, 1997.[AW93] Alexander Aiken and Edward L. Wimmers. Typeinclusion constraints and type inference. FunctionalProgramming Languages and Computer Architecture,pages 31{41, ACM, 1993.[BG93] Gilad Bracha and David Griswold. Strongtalk:Typechecking Smalltalk in a production environment.In Conference on Object-Oriented Programming, Sys-tems, Languages and Applications, pages 215-230,1993.[BOW98] Kim B. Bruce, Martin Odersky, and PhilipWadler. A statically safe alternative to virtual types.

European Conference on Object-Oriented Program-ming, July 1998. (An earlier version was presentedat 5th Workshop on Foundations of Object-OrientedLanguages, January 1998.)[CCHOM89] Peter Canning, William Cook,Walter Hill, Walter Oltho�, and John C. Mitchell. F-bounded polymorphism for object-oriented program-ming. Functional Programming Languages and Com-puter Architecture, pages 273{280, ACM, 1989.[CS98] Corky Cartwright and Guy Steele. Compatiblegenericity with run-time types for the Java pro-gramming language. Conference on Object-OrientedProgramming, Systems, Languages and Applications,1998.[EST95] Jonathan Eifrig, Scott Smith, and Valery Trifonov.Sound polymorphic type inference for objects. Confer-ence on Object-Oriented Programming, Systems, Lan-guages and Applications, pages 169{184, 1995.[GHJV94] Erich Gamma, Richard Helm, Ralph Johnsonand John Vlissides. Design Patterns : Elements ofReusable Object-Oriented Software. Addison-Wesley,1994.[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Lan-guage and Its Implementation. Addison-Wesley, 1983.[GJ98a] Martin Odersky. The GJ compiler. Available fromwww.cis.unisa.edu.au/~pizza/gjwwwipd.ira.uka.de/~pizza/gjwww.math.luc.edu/pizza/gjwww.cs.bell{labs.com/~wadler/pizza/gj[GJ98b] Gilad Bracha, Martin Odersky, David Stoutamire,and Philip Wadler. GJ: the Java programming lan-guage with type parameters. Manuscript, 1998. Avail-able at the GJ web site.[GJ98c] Gilad Bracha, Martin Odersky, David Stoutamire,and Philip Wadler. GJ Speci�cation. Manuscript,1998. Available at the GJ web site.[GLS96] James Gosling, Bill Joy, and Guy Steele. The Javalanguage speci�cation. Java Series, Sun Microsystems,ISBN 0-201-63451-1, 1996.[LY96] Tim Lindholm and Frank Yellin. The Java VirtualMachine speci�cation. Java Series, Sun Microsystems,ISBN 0-201-63452-X, 1996.[Mil78] Robin Milner. A theory of type polymorphism inprogramming. Journal of Computer and System Sci-ences, 17:348{375, 1978.[MBL97] Andrew C. Myers, Joseph A. Bank, and BarbaraLiskov. Parameterized types for Java. Symposium onPrinciples of Programming Languages, pages 132{145,ACM, 1997.[OR98] Martin Odersky and Enno Runne. Measuring thecost of parameterized types in Java. Research ReportCIS-98-004, Advanced Computing Research Centre,University of South Australia, January 1998.[OW97] Martin Odersky and Philip Wadler. Pizza intoJava: Translating theory into practice. Symposium onPrinciples of Programming Languages, pages 146{159,ACM, 1997.

www.manaraa.com

[PT98] Benjamin C. Pierce and David N. Turner. LocalType Inference. Symposium on Principles of Program-ming Languages, pages 252{265, ACM, 1998.[RS97] Paul Roe and Clemens Szyperski. Lightweight Para-metric Polymorphism for Oberon. Proceedings JointModular Languages Conference, Johannes Kepler Uni-versity Linz Schlo� Hagenberg Austria, March, 1997http://www.�t.qut.edu.au/~szypersk/Gardens/[Tho97] Kresten Krab Thorup. Genericity in Java with vir-tual types. European Conference on Object-OrientedProgramming, pages 444{471, LNCS 1241, Springer-Verlag, 1997.[Tor98] Mads Togersen. Virtual types are statically safe.5th Workshop on Foundations of Object-Oriented Lan-guages, January 1998.[TT98] Kresten Krab Thorup and Mads Togersen. Struc-tural virtual types. Informal session on types for Java,5th Workshop on Foundations of Object-Oriented Lan-guages, January 1998.[Wri95] A. Wright, Simple imperative polymorphism, Lispand Symbolic Computation, 8:343{355, 1995.

